The evaluation of synchrotron radiation in SAD is done usingbased on "kinematical method":

Let q denote the orientation vector of the momentum of a particle:

$$\boldsymbol{q} = \left(\frac{p_x}{p}, \frac{p_y}{p}, \frac{p_z}{p}\right) , \qquad (81)$$

$$p_z = \sqrt{p^2 - p_x^2 - p_y^2} \ . \tag{82}$$

Suppose a particles traverses a section (1, 2) of an accelerator component, then the orientation changes from q_1 to q_2 . The bending angle ϕ and the radius of curvature ρ_r are approximated, assuming a uniform bending, by:

$$\sin|\phi| = |\mathbf{q}_2 \times \mathbf{q}_1| , \qquad (83)$$

$$\rho_{\rm r} = \frac{{\rm L}_{12} - z_2 + z_1}{|\phi|},\tag{84}$$

where L_{12} is the nominal length of the component between 1 and 2, and $z_{1,2}$ are the values of longitudinal coordinate $z \equiv -v(t - t_0)$ at the locations 1 and 2.

Figure 1: The kinematical method for synchrotron radiation.

By knowing ϕ and ρ_r as well as the momentum of the particle, we can derive all information about the emission of synchrotron radiation (if we can use a classical formula with uniform bending).

- Thus the synchrotron radiation can be handled by a single routine for any type of component, such as multipoles, solenoid, fringe field, even including electric field, without knowing the details of the field.
- A component is sliced so that $N_{\gamma} \lesssim 1$.
- Not only the radiation itself, its derivatives by phase space coordinates can be obtained kinematically using the transfer matrix. These derivatives are used to evaluate the damping and excitation matrices.
- In the region where the field is not uniform, such as the F1 region of a BEND, a special treatment for ρ_r is applied.
- This method may be applied for a *spin motion* if the longitudinal filed is taken care properly.