The transformation matrix from the physical coordinate $\left(x, p_{x}, y, p_{y}\right)$ to the $x-y$ decoupled coordinate $\left(X, P_{X}, Y, P_{Y}\right)$ is written as

$$
\mathrm{R}=\left(\begin{array}{cc}
\mu \mathrm{I} & \mathrm{Jr}^{T} \mathrm{~J} \tag{60}\\
\mathrm{r} & \mu \mathrm{I}
\end{array}\right)=\left(\begin{array}{cccc}
\mu & . & -\mathrm{R} 4 & \mathrm{R} 2 \\
\cdot & \mu & \mathrm{R} 3 & -\mathrm{R} 1 \\
\mathrm{R} 1 & \mathrm{R} 2 & \mu & . \\
\mathrm{R} 3 & \mathrm{R} 4 & \cdot & \mu
\end{array}\right)
$$

with a submatrix

$$
r=\left(\begin{array}{ll}
R 1 & R 2 \tag{61}\\
R 3 & R 4
\end{array}\right),
$$

where

$$
\begin{align*}
& \mu^{2}+\operatorname{det}(\mathrm{r})=1, \tag{62}\\
& \mathrm{I} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \tag{63}\\
& \mathrm{J} \equiv\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \tag{64}
\end{align*}
$$

The inverse of R is obtained by reversing the sign of r :

$$
\mathrm{R}^{-1}=\left(\begin{array}{cc}
\mu \mathrm{I} & -\mathrm{Jr}^{T} \mathrm{~J} \tag{65}\\
-\mathrm{r} & \mu \mathrm{I}
\end{array}\right)=\left(\begin{array}{cccc}
\mu & . & \mathrm{R} 4 & -\mathrm{R} 2 \\
\cdot & \mu & -\mathrm{R} 3 & \mathrm{R} 1 \\
-\mathrm{R} 1 & -\mathrm{R} 2 & \mu & \cdot \\
-\mathrm{R} 3 & -\mathrm{R} 4 & \cdot & \mu
\end{array}\right)
$$

The value of the function DETR is equal to $\operatorname{det}(\mathrm{r})$ in this case.
Let T stand for the physical transfer matrix from location 1 to location 2, then the transformation in the decoupled coordinate is diagonalized as

$$
\mathrm{R}_{2} \mathrm{TR}_{1}^{-1}=\left(\begin{array}{cc}
\mathrm{T}_{X} & 0 \tag{66}\\
0 & \mathrm{~T}_{Y}
\end{array}\right)
$$

The Twiss parameters are defined for the 2 by 2 matrices T_{X} and T_{Y}.
If $\operatorname{det}(\mathrm{r}) \geq 1$, the above condition for μ is violated. In such a case, an alternative form of R is used:

$$
\mathrm{R}=\left(\begin{array}{cc}
\mathrm{Jr}^{T} \mathrm{~J} & \mu \mathrm{I} \tag{67}\\
\mu \mathrm{I} & \mathrm{r}
\end{array}\right)
$$

where $\mu^{2}+\operatorname{det}(\mathrm{r})=1$. The function DETR shows a number $a-\operatorname{det}(\mathrm{r})$, where $a=1.375$. thus the alternative form is used when $\operatorname{det}(\mathrm{r})>=0.625$.

