The transformation of a SEXT is given as

 $\times \exp(: V_2:) \exp(: aL:) \exp(: H_2/2:) \exp(: bL:) \exp(: F_{out}:)$

K2:

third-order terms in L:

 $\gamma = 1/40 - 1/(24\sqrt{3})$.

where L and H_2 are the Hamiltonians of a drift of length L and a thin sextupole kick with integrated strength

 $H_2 = \frac{K2}{3!} \Re(x - iy)^3$

 $\exp(: F_{in}:) \exp(: aL:) \exp(: H_2/2:) \exp(: bL:)$

 $V_2 = \sum -\frac{\beta}{2} H_{2,k}^2 + \gamma H_{2,j} H_{2,k} H_{2,j,k} ,$

where , i represents the derivative by x or y. We have also introduced two coefficients $\beta \equiv 1/6 - 1/\sqrt{48}$ and

respectively. The coefficients are $a \equiv 1/2 - 1/\sqrt{12}$ and b = 1/2 - a. Terms exp(: $F_{\rm in}$:) and exp(: $F_{\rm out}$:) are

(193)

(192)

(194)

transformations for entrance and exit nonlinear fringes. The term $\exp(:V_2:)$ is a correction to adjust the