The body is subdivided into

$$
\begin{equation*}
n=1+\text { Floor }\left[\frac{10|\mathrm{~K} 1 \mathrm{~L}|}{\mathrm{EPS}}\right] \tag{176}
\end{equation*}
$$

slices. $\operatorname{EPS}=1$ is used when EPS $=0$. Then a transversely linear transformation $\exp \left(: H_{2 n}:\right)$ is applied in each slice with

$$
\begin{equation*}
H_{2 n}=\frac{1}{n}\left\{\left(-p+\frac{p_{x}^{2}+p_{y}^{2}}{2 p}+\frac{E}{v_{0}}\right) \mathrm{L}+\frac{\mathrm{K} 1}{2}\left(x^{2}-y^{2}\right)\right\} . \tag{177}
\end{equation*}
$$

Between slices the correction $\exp (: \Delta H$:) for the kinematical term

$$
\begin{equation*}
\Delta H=\frac{1}{n}\left(p-\sqrt{p^{2}-p_{x}^{2}-p_{y}^{2}}-\frac{p_{x}^{2}+p_{y}^{2}}{2 p}\right) \mathrm{L} \tag{178}
\end{equation*}
$$

is applied. In a solenoid, the forms of $H_{2 n}$ and ΔH are modified.

