The transformation of a OCT is given as

$$
\begin{align*}
& \exp \left(: F_{\text {in }}:\right) \exp (: a \mathrm{~L}:) \exp \left(: H_{3} / 2:\right) \exp (: b \mathrm{~L}:) \\
\times & \exp \left(: V_{3}:\right) \exp (: a \mathrm{~L}:) \exp \left(: H_{3} / 2:\right) \exp (: b \mathrm{~L}:) \exp \left(: F_{\text {out }}:\right), \tag{160}
\end{align*}
$$

where L and H_{3} are the Hamiltonians of a drift of length L and a thin octupole kick with integrated strength K3:

$$
\begin{equation*}
H_{3}=\frac{\mathrm{K} 3}{4!} \Re(x-i y)^{4} \tag{161}
\end{equation*}
$$

respectively. The coeffients are $a \equiv 1 / 2-1 / \sqrt{12}$ and $b=1 / 2-a$. Terms $\exp \left(: F_{\text {in }}:\right)$ and $\exp \left(: F_{\text {out }}:\right)$ are transformations for entrance and exit nonlinear fringes. The term $\exp \left(: V_{3}:\right)$ is a correction to adjust the third-order terms in L:

$$
\begin{equation*}
V_{3}=\sum_{j=(x, y), k=(x, y)}-\frac{\beta}{2} H_{3, k}^{2}+\gamma H_{3, j} H_{3, k} H_{3, j, k} \tag{162}
\end{equation*}
$$

where , i represents the derivative by x or y. We have also introduced two coefficients $\beta \equiv 1 / 6-1 / \sqrt{48}$ and $\gamma=1 / 40-1 /(24 \sqrt{3})$

